Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm.
نویسندگان
چکیده
During active exploration, hippocampal neurons exhibit nested rhythmic activity at theta ( approximately 8 Hz) and gamma ( approximately 40 Hz) frequencies. Gamma rhythms may be generated locally by interactions within a class of interneurons mediating fast GABA(A) (GABA(A,fast)) inhibitory postsynaptic currents (IPSCs), whereas theta rhythms traditionally are thought to be imposed extrinsically. However, the hippocampus contains slow biophysical mechanisms that may contribute to the theta rhythm, either as a resonance activated by extrinsic input or as a purely local phenomenon. For example, region CA1 of the hippocampus contains a slower class of GABA(A) (GABA(A,slow)) synapses, believed to be generated by a distinct group of interneurons. Recent evidence indicates that these GABA(A,slow) interneurons project to the GABA(A, fast) interneurons that contribute to hippocampal gamma rhythms. Here, we use biophysically based simulations to explore the possible ramifications of interneuronal circuits containing separate classes of GABA(A,fast) and GABA(A,slow) interneurons. Simulated interneuronal networks with fast and slow synaptic kinetics can generate mixed theta-gamma rhythmicity under restricted conditions, including strong connections among each population, weaker connections between the two populations, and homogeneity of cellular properties and drive. Under a broader range of conditions, including heterogeneity, the networks can amplify and resynchronize phasic responses to weak phase-dispersed external drive at theta frequencies to either GABA(A,slow) or GABA(A,fast) cells. GABA(A, slow) synapses are necessary for this process of amplification and resynchronization.
منابع مشابه
Interactions between Distinct GABAA Circuits in Hippocampus
Synchronous activity among synaptically connected interneurons is thought to organize temporal patterns such as gamma and theta rhythms in cortical circuits. Interactions between distinct interneuron circuits may underlie more complex patterns, such as nested rhythms. Here, we demonstrate such an interaction between two groups of CA1 interneurons, GABA(A,slow) and GABA(A,fast) cells, that may c...
متن کاملHippocampal Theta Modulation of Neocortical Spike Times and Gamma Rhythm: A Biophysical Model Study
The hippocampal theta and neocortical gamma rhythms are two prominent examples of oscillatory neuronal activity. The hippocampus has often been hypothesized to influence neocortical networks by its theta rhythm, and, recently, evidence for such a direct influence has been found. We examined a possible mechanism for this influence by means of a biophysical model study using conductance-based mod...
متن کاملAltered GABAA,slow inhibition and network oscillations in mice lacking the GABAA receptor beta3 subunit.
Phasic GABAergic inhibition in hippocampus and neocortex falls into two kinetically distinct categories, GABA(A,fast) and GABA(A,slow). In hippocampal area CA1, GABA(A,fast) is generally believed to underlie gamma oscillations, whereas the contribution of GABA(A,slow) to hippocampal rhythms has been speculative. Hypothesizing that GABA(A) receptors containing the beta(3) subunit contribute to G...
متن کاملThe synaptic basis of GABAA,slow.
Although two kinetically distinct evoked GABAA responses (GABAA,fast and GABAA,slow) have been observed in CA1 pyramidal neurons, studies of spontaneous IPSCs (sIPSCs) in these neurons have reported only a single population of events that resemble GABAA,fast in their rise and decay kinetics. The absence of slow sIPSCs calls into question the synaptic basis of GABAA,slow. We present evidence her...
متن کاملGABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations.
Gamma (30-80 Hz) oscillations occur in mammalian electroencephalogram in a manner that indicates cognitive relevance. In vitro models of gamma oscillations demonstrate two forms of oscillation: one occurring transiently and driven by discrete afferent input and the second occurring persistently in response to activation of excitatory metabotropic receptors. The mechanism underlying persistent g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 14 شماره
صفحات -
تاریخ انتشار 2000